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CSP and Thermal Energy Storage
 Concentrating solar power uses mirrors to concentrate the sun’s energy onto a 

receiver to provide heat to spin a turbine/generator to produce electricity
 Hot fluid can be stored as thermal energy efficiently and inexpensively for on-

demand electricity production when the sun is not shining



DOE Gen 3 CSP Program

 Higher operating temperatures
 Higher efficiency electricity production
 Supercritical CO2 Brayton Cycles (>700 ˚C)
 Air Brayton Combined Cycles (>1000 ˚C)

 Thermochemical storage & solar fuel production 
(>1000 ˚C)
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Particle-based CSP systems with 
high-temperature storage
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High Temperature Falling Particle Receiver
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Falling particle receiver 

Particle elevator 

Particle hot storage 
tank 

Particle cold storage 
tank 

Particle-to-working-fluid 
heat exchanger 

Goal:  Achieve higher temperatures, higher 
efficiencies, and lower costs



Particle Receiver Designs – Free Falling
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Value Proposition

 Proposed particle receiver system 
has significant advantages over 
current state-of-the-art CSP systems
 Sub-zero to over ~1000 °C operating 

temperatures
 No freezing and need for expensive 

trace heating
 Use of inert, non-corrosive, inexpensive 

materials
 Direct storage (no need for additional 

heat exchanger)
 Direct heating of particles (no flux 

limitations on tubes; immediate 
temperature response)
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Gen 3 Particle Pilot Plant (G3P3)
Integrated System
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G3P3-USA system next to the 
existing 200-ft tower at the 

National Solar Thermal Test Facility
Sandia National Laboratories,

Albuquerque, NM

35
 m

 (1
15

 ft
)

Baseline Design
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Particle Storage Considerations

 Configuration
 Two-tank vs. Single-tank thermocline

 Sizing and shape
 Energy storage capacity
 Shape: heat loss vs. stress

 Particle Materials
 Engineered vs. natural materials

 Cost
 Levelized cost of storage options
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Configuration | Sizing and Shape | Particle materials | Cost



Two-Tank Particle Storage

 Hot Particle Storage

 Particle Heat Exchanger

 Cold Particle Storage

 Particle Lift and Conveyance
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Configuration | Sizing and Shape | Particle materials | Cost



Two-Tank Storage Design
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Configuration | Sizing and Shape | Particle materials | Cost



Particle Heat Exchanger 
(for Two-Tank storage)
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Type Pros Cons

Fluidized 
Bed

High heat-
transfer 

coefficients

Energy and 
mass loss 

from 
fluidization

Moving 
packed 

bed

Gravity-fed 
particle

flow; low 
erosion

Low particle-
side heat 
transfer

www.cpfd-software.com

 

Hot 
working 

fluid

Cold 
working 

fluid

Configuration | Sizing and Shape | Particle materials | Cost






Single-Tank Thermocline Storage
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Issues:
• Thermal gradients
• Thermal ratcheting Fluekiger et al. (2013, 2014)

Configuration | Sizing and Shape | Particle materials | Cost



Solar One Thermocline Test (1982-1986)
Faas et al., SAND86-8212

 300 °C, 182 MWht, oil 
HTF, sand/gravel, 
13 m tall, H/D=0.66
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Configuration | Sizing and Shape | Particle materials | Cost

Fluekiger et al. (2012)



Sandia Thermocline Test (2001)

 400 °C, 2.3 MWht, salt HTF, sand/gravel, 6.1 m tall, 
H/D = 2.0
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Salt-to-Air Cooler

Thermocline tank

Propane heater

Pacheco et al., JSEE, 2002 Brosseau et al., SAND2004-3207

Configuration | Sizing and Shape | Particle materials | Cost



Configuration Findings

Thermocline Storage
 Heat-transfer fluid flows 

across a bed of particles for 
charging and discharging

 Single tank may reduce 
materials and cost by 30%

 Thermal ratcheting may 
cause tank damage

 Diffuse temperature profile 
reduces performance

 Quartzite rock and silica 
sand worked well with 
molten salt

Two-Tank Storage
 Particles are heated first 

and then stored in hot tank
 Requires particle 

conveyance to tanks and 
heat exchanger(s)

 Requires particle-to-
working fluid heat 
exchanger
 Gravity-driven moving packed 

bed
 Fluidized bed

18

Configuration | Sizing and Shape | Particle materials | Cost



H~14 m

D ~ 26 m

For 1 GWht, need a ~7500 m3 tank
(cp=1200 J/kg-K, ∆T=200 K)

Tank Sizing
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Configuration | Sizing and Shape | Particle materials | Cost
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Tank Shape

 Consideration of heat loss and wall stresses
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H
ei

gh
t

PressureFluid Particles 
(wide tank)

Particles 
(narrow tank)

A

B
C

A B C

“Janssen” stress 
profiles for bulk 
particle storage

Configuration | Sizing and Shape | Particle materials | Cost



Tank Shape

 Consideration of heat loss and wall stresses

21

H/D ~ 16H/D ~ 1 HD

Configuration | Sizing and Shape | Particle materials | Cost



Particle Materials

 Thermocline storage
 High heat capacity
 Low void fraction
 Low cost
 Brosseau et al. (SAND2004-3207)
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Configuration | Sizing and Shape | Particle materials | Cost

Siegel, Wiley, (2012)

Quartzite rock Silica Sand



Particle Materials
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Configuration | Sizing and Shape | Particle materials | Cost

Cost of particle 
materials 
(delivered)
Pacheco et al., JSEE, 
Development of a Molten-Salt
Thermocline Thermal Storage
System for Parabolic Trough
Plants (2002)



Particle Materials – Two-Tank CSP

 CARBO Ceramic Beads
 Cost

 $1 - $2/kg

 Durability
 Low wear/attrition

 Optical properties
 High solar absorptance

 Good flowability
 Spherical and round

 Low inhalation hazard
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Configuration | Sizing and Shape | Particle materials | Cost



Comparison of Energy Storage Options

25

Energy Storage Technology
Solid 

Particles
Molten Nitrate 

Salt Batteries Pumped 
Hydro

Compressed 
Air Flywheels

Levelized Cost1

($/MWhe)
10 – 13 11 – 17 100 – 1,000 150 - 220 120 – 210 350 - 400

Round-trip 
efficiency2

>98% 
thermal 
storage
~40% 

thermal-to-
electric

>98% thermal 
storage
~40% 

thermal-to-
electric

60 – 90% 65 – 80% 40 – 70% 80 – 90%

Cycle life3 >10,000 >10,000 1000 – 5000 >10,000 >10,000 >10,000

Toxicity/
environmental 
impacts

N/A
Reactive with 

piping 
materials

Heavy metals 
pose 

environmental 
and health 
concerns

Water 
evaporation/ 
consumption

Requires large 
underground 

caverns
N/A

Restrictions/
limitations

Particle/fluid 
heat transfer 

can be 
challenging

< 600 °C 
(decomposes 
above ~600 

°C)

Very 
expensive for 
utility-scale 

storage

Large 
amounts of 

water required

Unique 
geography 
required

Only provides 
seconds to 
minutes of 

storage

Configuration | Sizing and Shape | Particle materials | Cost

Ho, Applied Thermal Engineering, 109 (2016) 
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Conclusions

 CSP investigating high-temperature particle storage
 Ambient to ~1000 °C (no freezing)
 Single-tank thermocline storage

 Reduced material, potentially lower cost (30%), thermal ratcheting

 Two-tank particle storage
 Requires particle conveyance and heat exchanger

 Particle materials
 Quartzite rock, silica sand for thermoclines
 Sintered bauxite (ceramic particles) for CSP G3P3

 Hot particle storage
 Economical long-duration storage option
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mailto:ckho@sandia.gov


BACKUP SLIDES

30



Thermal Energy Storage Goals

 Capable of achieving high temperatures (> 700 C)
 High energy and exergetic efficiency (>95%)
 Large energy density (MJ/m3)
 Low cost (<$15/kWht;  <$0.06/kWhe for entire CSP 

system)
 Durable (30 year lifetime)
 Ease of heat exchange with working fluid (h > 100 

W/m2-K)
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Sintering Potential of Particles

Al-Ansary et al., “Characterization and Sintering Potential of Solid Particles for Use in High Temperature Thermal Energy 
Storage System,” SolarPACES 2013 32



Comparison of Large-Scale Battery and 
Thermal Energy Storage Capacity in the U.S.

33

742

1100

1680

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Large-Scale Battery
Storage

(~100 plants in U.S.)

Crescent Dunes CSP
Plant

(molten-salt storage)

Solana CSP Plant
(molten-salt storage)

En
er

gy
 S

to
ra

ge
 C

ap
ac

ity
 (M

W
h)

U.S. Energy Information Administration (June 5, 2018)

~10,000 MWh is required to power a large city 
(e.g., Los Angeles or New York) for one hour.



 Evaluate commercial particle lift 
designs
 Requirements

 ~10 – 30  kg/s per meter of particle 
curtain width

 High operating temperature ~ 550 °C
 Different lift strategies evaluated

 Screw-type (Olds elevator)
 Bucket
 Mine hoist

Particle Elevators

Repole, K.D. and S.M. Jeter, 2016, Design and Analysis of a High Temperature Particulate Hoist for Proposed 
Particle Heating Concentrator Solar Power Systems, in ASME 2016 10th International Conference on Energy 
Sustainability, ES2016-59619, Charlotte, NC, June 26 - 30, 2016.
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Alternative Thermocline Design

 Single-tank thermocline storage with no filler
 Uses baffle to separate hot and cold fluids and prevent 

mixing
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Configuration | Sizing | Heat loss and Insulation | Particle materials | Cost

Lata and Blanco, SolarPACES 2010



Problem Statement

 Current renewable energy 
sources are intermittent
 Causes curtailment or negative 

pricing during mid-day
 Cannot meet peak demand, 

even at high penetration

 Available energy storage 
options for solar PV & wind
 Large-scale battery storage is 

expensive
 $0.20/kWhe - $1.00/kWhe

 Compressed air and pumped 
hydro – geography and/or 
resource limited
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Source:  California Independent System Operator

The “Duck Curve”



Need

 Renewable energy technology with reliable, efficient, 
and inexpensive energy storage

37

Concentrating solar power (CSP) 
with thermal energy storage
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